Double Isomerization Polymerization of Bispseudoureas: A New Cyclopolymerization

Masatoshi Miyamoto'

Department of Chemical and Biochemical Engineering, Faculty of Engineering, Toyama University, Gofuku, Toyama 930, Japan

Hideki Amii

Department of Synthetic Chemistry, Faculty of Engineering, Kyoto University, Yoshida, Sakyo-ku, Kyoto 606, Japan

Keigo Aoi

Faculty of Agriculture, Nagoya University, Chikusa-ku, Nagoya 464-01, Japan

Takeo Saegusa

KRI International, Inc., 17 Chudoji-Minami-Machi, Shimogyo-ku, Kyoto 600, Japan

Received August 5, 1992 Revised Manuscript Received December 1, 1992

Introduction

Monomers having two or more polymerizable functional groups, divinylbenzene as the most common example, are often used as cross-linking agents. If two polymerizable groups are properly arranged, cyclopolymerization proceeds. Cyclopolymerization of vinyl monomers is well known, but that of ring-opening monomers is rare. In the present paper we describe the preparation of linear polymers, polyureas, from bifunctional monomers having two cyclic pseudourea groups (1) via a novel mode of polymerization, "double isomerization polymerization" (Scheme I).

Recently, we reported that the polymerization of cyclic pseudoureas 4 initiated by alkyl halides yields poly(1,3-diazolidin-2-on-1,3-diyloligomethylene)s 5 (Scheme II).² For example, the cationic polymerization of 2-piperidino-2-oxazoline (4a) with benzyl bromide produces poly(1,3-diazolidin-2-on-1,3-diylpentamethylene) (5a). This polymerization was named "double isomerization polymerization" (DIP) to distinguish it from the other type of ring-opening polymerization of 4 to produce poly[(N-carbamoyl)iminoethylene]s (6). This DIP is a unique and unknown type of polymerization since it proceeds accompanying the isomerization of propagating species.

Two bispseudoureas, bis(2-oxazolin-2-yl)piperazine (1a) and bis(2-oxazolin-2-yl)homopiperazine (1b), were newly synthesized and their DIP was carried out, which yielded linear polymers containing cyclic urea units. Each monomer 1 has three rings, one cyclic diimino ring and two oxazoline rings. During the DIP of 1, all three rings open and two cyclic urea rings are newly formed.

Experimental Section

Materials. 2-Ethoxy-2-oxazoline was prepared as described in the previous paper.³ Other reagents and solvents were commercially available and were dried by the conventional methods and distilled under nitrogen. The solvents were stored over 3Å molecular sieves after distillation.

Measurements. ¹H NMR spectra were recorded on a 60-MHz Hitachi R-600 or 400-MHz JEOL JNM-JX-400 NMR spectrometer. ¹³C NMR spectra were recorded on a Hitachi R-900 NMR spectrometer operated at 22.6 MHz. FT-IR spectra were obtained on a Perkin-Elmer 1600 infrared spectrometer. High-resolution mass spectra were measured with a JEOL MS-DX 300, and GC-MS measurements were carried out on a Shimadzu

GC MS QP2000. GPC analysis was performed with a Toso HLC 8020 system using a Shodex AC803 column in chloroform. Number-average molecular weights of the samples were measured with a vapor pressure osmometer (Corona Model 117) in chloroform at 40 °C. DSC analysis was carried out on a SEIKO SSC-5000.

Procedure for the Preparation of la. In a two-necked flask equipped with a reflux condenser and a magnetic stirrer bar were placed 20 g of 2-ethoxy-2-oxazoline (0.173 mmol), 6.35 g of piperazine, and 150 mL of benzene. To the mixture was added a catalytic amount of p-toluenesulfonic acid, and the mixture was heated to reflux. The consumption of 2-ethoxy-2-oxazoline was traced by GLC, and the almost complete conversion of 2-ethoxy-2-oxazoline was attained after 4 h. After evaporation of the solvent, the resulting white residue was dissolved in dichloromethane, washed with aqueous K2CO3, and dried over anhydrous K₂CO₃. After filtration, hexane was added to the filtrate to precipitate the product, 1a, which was further purified by recrystallization from dichloromethane. The yield after recrystallization was $9.30~\mathrm{g}$ (56%): colorless needles, mp 209.2°C (DSC); ¹H NMR (60 MHz, CDCl₃) δ 3.4 (s, NCH₂CH₂N, 4 H). 3.6-3.9 (m, NCH₂CH₂O, 4 H), 4.2-4.5 (m, OCH₂, 4 H); ¹³C NMR (CDCl₃) δ 45.1 (NCH₂CH₂N), 52.7 (NCH₂CH₂O), 68.3 (OCH₂); IR (NaCl) 2987 (ν_{C-H}), 2869 (ν_{C-H}), 1655 (ν_{C-N}), 1432, 1288, 1247, $1091, 933, 714 \text{ cm}^{-1}$; mass spectrum m/e 224 (M⁺), 113, 99, 87, 55; exact mass found: m/e 224.12532 (calcd for $C_{10}H_{16}N_4O_2$: m/e224.12731).

1b was prepared by a similar procedure, but purified by distillation: white crystalline solid, 46 % yield, mp 51.0 °C (DSC), bp 210 °C/2.0 Torr; ^1H NMR (60 MHz, CDCl_3) δ 1.8 (q, NCH_2CH_2-CH_2N, 2 H), 3.4 (t, NCH_2CH_2CH_2N, 4 H), 3.5 (s, NCH_2CH_2N, 4 H), 3.5–3.8 (m, NCH_2CH_2O, 4 H), 4.1–4.4 (m, OCH_2, 4 H); ^{13}C NMR (CDCl_3) δ 21.5 (NCH_2CH_2CH_2N), 47.5 (NCH_2CH_2CH_2N), 49.6 (NCH_2CH_2N), 53.1 (NCH_2CH_2O), 68.3 (OCH_2); IR (NaCl) 2958 ($\nu_{\text{C}-\text{H}}$), 1645 ($\nu_{\text{C}-\text{H}}$), 1484, 1436, 1305, 931, 716 cm $^{-1}$; mass spectrum m/e 238 (M $^+$), 169, 152, 139, 125, 113, 99, 87; exact mass found: m/e 238.14116 (calcd for C $_{11}\text{H}_{18}\text{N}_4\text{O}_2$: m/e 238.14296).

Typical Procedure for the Double Isomerization Polymerization of Bispseudoureas. In a test tube equipped with a magnetic stirrer bar and a three-way stopcock were placed 0.493 g (2.20 mmol) of 1a and 10 mL of benzonitrile under nitrogen. To the solution was added 46.0 mg (0.269 mmol) of benzyl bromide with stirring. The tube was sealed and allowed to react at 150 °C for 100 h. The produced polymer 2b was isolated by precipitation from an equivolume mixture of diethyl ether with hexane as an orange crystalline solid, which was purified further by repeated reprecipitation from dichloromethane to an etherhexane mixture and dried in vacuo. The yield was 0.40 g (81%).

Results and Discussion

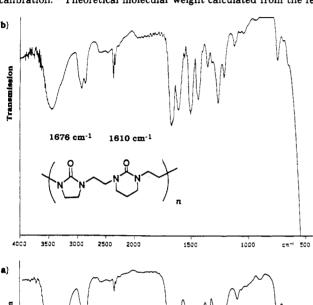

Preparation of Cyclic Bispseudoureas. The bisoxazolines 1a and 1b were newly prepared in moderate yields

Table I

Double Isomerization Polymerization of Bispseudoureas 1st

						polymer				
									DP	
1	initiator	$[\mathbf{M}]_0/[\mathbf{I}]_0$	temp, °C	time, h	yield, %	structure	M_n^b	$M_{\rm w}/M_{\rm n}^{\rm c}$	obs^b	$theor^d$
la	MeI	10.3	100	200	53	2	1500	1.29	6.6	5.5
1a	$PhCH_2Br$	8.3	100	110	24	2	600	1.24	2.6	2.0
1a	$PhCH_2Br$	9.0	120	50	83	2	2000	1.12	9.1	7.5
la	$PhCH_2Br$	9.1	150	50	81	2	2000	1.23	8.8	7.4
1a	$PhCH_2Br$	50.3	150	100	58	2	6700	1.33	30	29
1 b	$PhCH_2Br$	9.7	100	40	89	3	1600	1.20	6.3	8.6
1 b	$PhCH_2Br$	45.0	150	100	89	3	9000	1.28	38	40

^a In benzonitrile. Typically, $[M]_0 = 0.22 \text{ mol/L}$. ^b Determined by VPO in chloroform at 35 °C. ^c Determined by GPC with polystyrene calibration. ^d Theoretical molecular weight calculated from the feed ratio combined with the polymer yield.

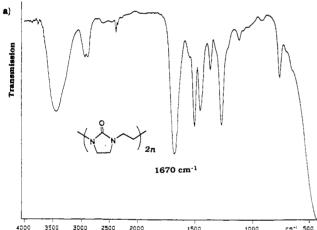


Figure 1. FT-IR spectra of 2 (a) and 3 (b).

by the condensation reactions of 2-ethoxy-2-oxazoline with the corresponding cyclic diimine catalyzed by p-toluenesulfonic acid in benzene (Scheme III). The monomers are white needles and were purified by recrystallization (for 1a) or distillation (for 1b).

Double Isomerization Polymerization of Bis(2-oxazolin-2-yl)piperazine (1a). When the monomer was heated with an alkyl halide, methyl iodide or benzyl bromide, the DIP of 1a proceeded. Benzonitrile was chosen as solvent since the DIP of 4 gave the best results in this solvent.² The results are summarized in Table I. The polymerization of 1a was examined at 100 °C and

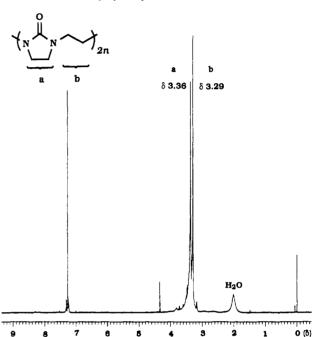


Figure 2. 400-MHz ¹H NMR spectrum of 2 (CDCl₃/TMS).

above, but the highest monomer conversion was attained at 120 °C and above. The resulting polymer 2 is highly crystalline and soluble in benzonitrile only above 60 °C. Therefore, 2 precipitated out from the polymerization mixture as brown needles when the reaction mixture was kept at room temperature after the heating. It was soluble in water, methanol, dichloromethane, and chloroform but insoluble in DMF, acetonitrile, acetone, THF, diethyl ether, carbon tetrachloride, and hydrocarbons. It is soluble in nitromethane at 60 °C.

The structure of the resulting polymer was determined from IR and ¹H and ¹³C NMR spectroscopies. Figure 1a shows the IR spectrum of 2, in which only one carbonyl stretching band appeared at 1670 cm⁻¹. The absence of the absorbance ascribed to the C=N stretching band of pseudourea at 1655 cm⁻¹ suggests that both pseudourea moieties in 1a react in the polymerization. The position of the carbonyl stretching band in Figure 1a coincides well with that for 5a (at 1676 cm⁻¹) and is higher than those for linear and six-membered cyclic ureas, indicating the presence of a five-membered cyclic urea unit, the 1,3-diaozolidin-2-one unit, in the polymer.

In the ¹H NMR spectrum of 2 (Figure 2), only two main peaks are observed at δ 3.29 and 3.36, indicating a simple and regulated structure of 2. The peaks around δ 7.3 and at δ 4.35 are ascribed to the benzyl group at the initiating end. The peak assignments were carried out taking into consideration the assignments for poly(1b) (vide infra).

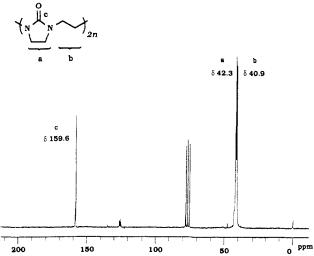


Figure 3. 22.6-MHz ¹³C NMR spectrum of 2 (CDCl₃/TMS).

The 13 C NMR spectrum of 2 is shown in Figure 3. The spectrum is again very simple and three major peaks are observed at δ 40.9, 42.3, and 159.6. The second and third peaks are reasonably ascribed to the methylene and carbonyl peaks of the 1,3-dioazolidin-2-one unit, respectively. The corresponding peaks in the spectrum of 5a appeared at δ 41.8 and 159.5.4 No peak ascribed to the pendant oxazoline ring or the carbamoyliminoethylene chain by the simple ring-opening polymerization of the oxazoline ring is observed in either NMR spectrum. From these results the polymer structure of 2 was identified as poly(1,3-diazolidin-2-on-1,3-diylethylene).

The observed molecular weights of 2 determined from VPO are summarized in Table I, which agreed well with the corresponding calculated ones on the basis of the feed ratio combined with the monomer conversion. The observed values agreed with those determined by GPC with polystyrene calibration. The molecular weight distribution of 2 is generally narrower than that of 5 having an analogous molecular weight.

Polymerization Mechanism for 1a. It is very unusual that the polymerization of a bifunctional monomer of a cyclic rigid structure gives linear polymer, 2. However, we expected the formation of linear polymer for 1a. The polymerization mechanism of 1a to yield 2 is supposed to be very complicated and, thus, we have not yet confirmed it from experimental evidence. However, it can be elucidated reasonably on the analogy of that for the DIP of 4 as well as with the consideration of the mechanism for cyclic imino ethers.^{2,5}

The presumed mechanism is illustrated in Scheme IV. By reaction of 1a with the initiator, benzyl bromide for example, an oxazolinium salt species, 7a, is formed. The counteranion of this salt, bromide, then attacks the 5-position of 7a to give a covalent-type alkyl bromide species 8a as an intermediate. This covalent species 8a converts to an ionic spiro compound, 9a, by the attack of the nitrogen atom. The resulting compound 9a of the N-alkylated urea structure is considered to be more thermodynamically favorable than the corresponding O-alkylated salt, 7a, because the C—O bond is generally stronger than the C—N bond. This salt 9a is electrophilic enough to suffer the attack of the counteranion or the monomer. The attack of the counteranion on the piperazinium ring forms a covalent ethyleneurea species 10a.

Although we have no experimental evidence to support these isomerizations from 7a to 10a, the existence of similar intermediates corresponding to 7a, 9a, and 10a was confirmed in the DIP of 4a with methyl iodide.²

When 10a is once formed, the other oxazoline moiety of 10a enters the reaction: the nitrogen atom of the oxazoline moiety attacks the methylene carbon adjacent to bromide to produce a bicyclic oxazolinium species, 11a. The attack of bromide on the 5-position of the oxazolinium ring will yield a covalent species 12a. Then both 11a and 12a can propagate by the attack of monomer. Presumably, an equilibrium will exist between them. We have no data showing which is the real propagating species. Perhaps it depends on the relative nucleophilicity of the counterion derived from the initiator to monomer as in the well known cases of cyclic imino ethers. 5,6

The route from 10a to 12a has not been supported by experimental results but is highly likely since a similar reaction pathway is known: the propagating species for the polymerization of 2-methyl-2-oxazoline with benzyl bromide are of both ionic and covalent species in equilibrium (Scheme V).

The attack of monomer on 11a or 12a yields another 7a-like oxazolinium species. If the consequent isomer-

izations from the 7a-like propagating species to a 12a-like species occur rapidly enough, the resulting polymer is linear. The attack of monomer on a 9a-like propagating species will form an oxazoline pendant group, which will cause branching and cross-linking. However, intramolecular attack of bromide anion predominantly occurs. The attack of monomer on a 10a-like propagating species will also form an oxazoline pendant group. However, the intramolecular cyclization forming the five-membered ring predominates.

The double isomerization polymerization of cyclic pseudoureas proceeds exclusively with alkyl halide initiators. On the other hand, the polymerization of 4 with sulfonate ester initiators yields poly(carbamoyliminoethylene)s (6) (Scheme II) via the usual ring-opening polymerization of the oxazoline ring since the counteranion derived from the initiator, a sulfonate ion, has no catalytic activity toward isomerizations due to a lack of nucleophilicity.² The polymerization of la with 2 mol % of methyl trifluoromethanesulfonate in benzonitrile at 150 °C quantitatively produced an insoluble gelish product after 100 h, whose IR spectrum showed the presence of urea groups ($\nu_{C=0} = 1630 \text{ cm}^{-1}$) and unreated oxazoline groups ($\nu_{C=N} = 1660 \text{ cm}^{-1}$). Obviously, two oxazoline moieties in 1a polymerize independently, which results in the branching and cross-linking of polymer.

Double Isomerization Polymerization of 1b. The polymerization of bis(2-oxazolin-2-yl)homopiperazine (1b) having a seven-membered diimino ring with benzyl bromide also produced a linear polymer, 3, in good yields (Table I).

If the polymerization mechanism for 1a shown in Scheme IV is also applicable to 1b, two unit structures are possible for poly(1b). After the formation of 7b by a similar initiating reaction, consecutive isomerizations yield 8alike species and, then, 9b (Scheme VI). The ionic spiro species 9b has three electrophilic reaction sites, i.e., the 2- and 7-positions of the homopiperazine ring and the methylene carbon of the diazolidinone ring. Among these three positions the attack on the diazolidinone ring has never been found.2 The attack of the counteranion on the 2-position forms a bromoethyl derivative, 10c (route C in Scheme VI), while attack at the 7-position produces a bromopropyl derivative 10b (route B). By successive isomerizations and the consequent propagation described above, the 1,3-diazolidin-2-on-1,3-diylethylene-5,6-dihydro-4H-1,3-diazin-2-on-1,3-diylethylene unit (the unit of 3) will be produced from 10b and the 1,3-diazolidin-2on-1,3-diylethylene-1,3-diazolidin-2-on-1,3-diyltrimethylene unit (the unit of 13) from 10c. Therefore, the structure of the resulting polymer from 1b will be 3 or 13 or will consist of both 3 and 13 units.

The structure of the polymer of 1b was most clearly characterized by IR spectroscopy since the C=O carbonyl stretching frequency of a five-membered cyclic urea is higher than that of a linear or six-membered cyclic urea having similar substituents.² The IR spectrum of poly-(1b) is shown in Figure 1b. Two C=O stretching bands appear at 1676 and 1630 cm⁻¹, indicating the presence of both types of urea groups. The former band is acribed to a five-membered cyclic urea from the comparison with the IR chart of 2 and the latter to a six-membered one: the carbonyl stretching band of 1,3-dimethyl-5,6-dihydro-

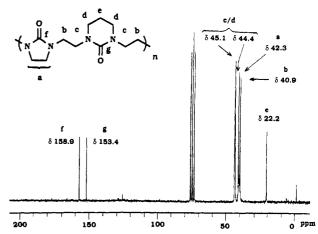
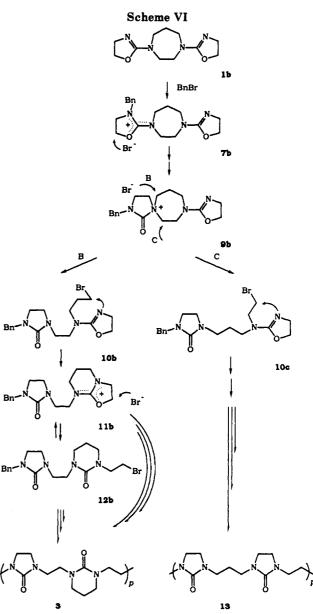



Figure 4. 22.6-MHz ¹³C NMR spectrum of 3 (CDCl₃/TMS).

4H-1,3-diazin-2-one (N,N'-dimethyltrimethyleneurea) appears at 1640 cm $^{-1}$.

Figure 4 shows the ¹³C NMR spectrum of poly(1b), in which seven main peaks are observed. The peaks ascribed to the carbonyl groups are observed at 153.4 and 158.9 ppm. The former is ascribed to five-membered cyclic urea carbonyl carbons from comparison with the NMR chart

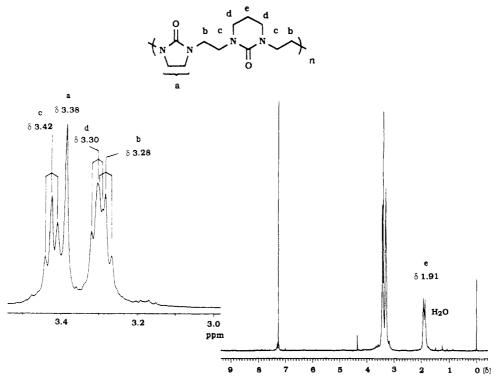


Figure 5. 400-MHz ¹H NMR spectrum of 3 (CDCl₃/TMS).

of 2 and, consequently, the latter is ascribed to six-membered ones.

Polymers containing six-membered cyclic urea units can be prepared by the DIP of 2-amino-5,6-dihydro-4*H*-1,3-oxazines.⁸ In the ¹³C NMR spectrum of a polymer of 2-(1-pyrrolidinyl)-5,6-dihydro-4*H*-1,3-oxazine (14), peaks as-

$$\left\langle N \right\rangle_{p}$$

cribed to six-membered rings appeared at 22.8 (N-C-C), 44.7 (N-C), and 153.3 (C=O) ppm. The coincidence between these chemical shifts of carbonyl peaks also supports the presence of six-membered cyclic urea units in 3. From the almost equal intensity of these carbonyl peaks in Figure 4 and the absence of minor peaks except for those ascribed to the initiating benzyl group at around 126 ppm, it is concluded that the polymer structure is pure 3 and it contains no 13 unit. Other peaks are ascribed to each carbon as shown in Figure 4 in due consideration of the data of 2 and 14. Peaks c and d could not be distinguished from each other.

The 400-MHz ¹H NMR spectrum of 3 also supports the polymer structure (Figure 5). Although the identification of each peak is very difficult due to their analogous chemical shifts, the peaks are reasonably ascribed as shown in Figure 5 in due consideration of the peak assignments for 2 and 14. The singlet at δ 3.38 is ascribed to the methylene protons of the five-membered urea ring (a). Therefore, the peak at δ 3.36 in the ¹H NMR spectrum of 2 (Figure 2) is assigned to methylenes a and the other peak at δ 3.29 is, hence, ascribed to methylenes b. Back to Figure 5, the triplet at δ 3.28 is assigned to methylenes b. In the ¹H NMR spectrum of 14 peaks ascribed to sixmembered ring protons appeared at δ 1.91 (NCCH₂) and 3.31 (NCH₂). Therefore, the peaks at δ 1.91 and 3.30 are ascribed to methylenes c and d, respectively.

The exclusive formation of 3 by the polymerization of 1b means bromide anion attacks selectively the 7-position

of the homopiperazine ring. It is tentatively explained by either a steric effect caused by the 2-oxazoline ring located at the 4-position or by an electronic effect of the urea group. However, it is generally known that substituents in the β - or γ -position do not have much effect on $S_N 2$ rates. 9 More studies would be necessary to discuss this problem further.

The observed molecular weights of 3 determined from VPO again agreed well with the calculated ones. Polymer 3 is soluble in water, nitromethane, methanol, benzonitrile, dichloromethane, and chloroform but insoluble in acetonitrile, DMF, acetone, THF, diethyl ether, carbon tetrachloride, and hydrocarbons. Polymers 2 and 3 are highly crystalline materials whose melting points are 210 (2) and 223 °C (3).

The polymerization of cyclic pseudoureas yields the new type of polyureas. Polymers consisting of five-membered cyclic urea rings and ethylene or tri-, tetra-, penta-, or hexamethylene units can be prepared by the DIP of 1a, 2-(1-azetidinyl)-2-oxazoline, 2-(1-pyrrolidinyl)-2-oxazoline, 4a, or 4b, respectively.^{2,4} These polymers can be considered as polymeric models for N,N,N',N'-tetramethylurea or 1,3-dimethyl-1,3-diazolidin-2-one (N,N'-dimethylethyleneurea). Analogous examples are polymers of 2-alkyl-2-oxazolines, which are polymeric models for N,Ndimethylformamide or N,N-dimethylacetamide. Polymers of 2-alkyl-2-oxazolines have been known to possess high compatibility to commodity polymers and to have excellent amphiphilic properties and are applicable as, for example, antielectrostatic agents, 10 hydrogels, 11 and nonionic surfactants. 12,13

References and Notes

- Hashimoto, H.; Kakuchi, T.; Yokota, K. J. Org. Chem. 1991, 56, 6470.
- (2) Miyamoto, M.; Aoi, K.; Yamaga, S.; Saegusa, T. Macromolecules 1992, 25, 5111.
- (3) Miyamoto, M.; Aoi, K.; Morimoto, M.; Chujo, Y.; Saegusa, T. Macromolecules 1992, 25, 5878.

- (4) Miyamoto, M.; Aoi, K.; Yamaga, S.; Shimakura, M.; Hasegawa,
- K.; Saegusa, T., to be submitted to Macromolecules. Kobayashi, S.; Saegusa, T. Ring-Opening Polymerization, Elsevier Applied Science Publishers: New York, 1985; Vol. 2, Chapter 11.
- (6) Miyamoto, M.; Aoi, K.; Saegusa, T. Macromolecules 1991, 24,
- (7) Saegusa, T.; Kobayashi, S.; Yamada, A. Makromol. Chem. 1976, 177, 2271.
- (8) The polymer of 2-(1-pyrrolidinyl)-5,6-dihydro-4H-1,3-oxazine via the DIP process contains a small amount of (carbamoylimino)trimethylene units. Miyamoto, M.; Aoi, K.; Saegusa, T., to be submitted to Macromolecules.
- (9) Okamoto, K.; Kita, T.; Araki, K.; Shingu, H. Bull. Chem. Soc. Jpn. 1967, 40, 1913, 1917.
- (10) Litt, M. H.; Herz, J. L. U.S. Patent 3,470,267, 1969. Miyamoto,

- M.; Sano, Y.; Saegusa, T.; Kobayashi, S. Eur. Polym. J. 1983, 19, 955.
- (11) Chujo, Y.; Yoshifuji, Y.; Sada, K.; Saegusa, T. Macromolecules 1989, 22, 1074. Chujo, Y.; Ihara, E.; Ihara, H.; Saegusa, T.; Macromolecules 1989, 22, 2040. Chujo, Y.; Sada, K.; Matsumoto, K.; Saegusa, T. Polym. Bull. 1989, 21, 353. Chujo, Y.; Sada, K.; Matsumoto, K.; Saegusa, T. Macromolecules 1990, 23, 1234.
- (12) Kobayashi, S.; Igarashi, T.; Moriuchi, Y.; Saegusa, T. Mac-romolecules 1986, 19, 535. Kobayashi, S.; Iijima, S.; Igarashi, T.; Saegusa, T. Macromolecules 1987, 20, 1729. Miyamoto, M.; Aoi, K.; Saegusa, T. Macromolecules 1989, 22, 3540.
- (13) Litt, M.; Chen, T. T.; Hsieh, B. R. J. Polym. Sci., Polym. Chem. Ed. 1986, 24, 3407. Litt, M. H.; Hsieh, B. R.; Krieger, I. M.; Chen, T. T.; Lu, H. L. J. Colloid Interface Sci. 1987, 115, 312.